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ABSTRACT 
In this paper, we review neural networks, models of neural networks, methods for selecting neural network 

architecture and constructive algorithms for regression problems. Cascade correlation algorithm is the most 

suitable for solving regression problems. Dynamic Node Creation (DNC) algorithm is a method which 

automatically grows backpropogation networks until the target problem is solved. Cascade 2 algorithm is a variant 

of Cascade correlation algorithm.  Recurrent CBPmethod addresses the construction of recurrent networks by the 

use of constructive backpropogation. Casper is known to produce more compact networks with very promising 

results. Adaptivesigmoidal activation function can be used for better generalization performance and training time 

can be reduced. 

INTRODUCTION  
N recent years, many models of neural networks are proposed for regression problem. Multilayer feedforward 

network is the most popular. Multilayer feedforward network is flexible in structure, has got good representation 

capabilities and large number of training algorithms are available for it. The generalization ability and learning 

accuracy of supervised learning in feed forward neural networks depend on several factors such as network 

architecture which include hidden nodes and connection topology between nodes, choice of activation function 

for each node and the training parameters like learning rate and weights [1]. These factors of the neural network 

model are either fixed prior to training or dynamically adjusted or changed during training of the network for a 

given problem. If these factors are not appropriately chosen then they may cause the under fitting and over fitting 

of the network which can result in a poor generalization of the network.  

 

Artificial neural Network is a network of artificial neuronsthat are interconnected according to a network 

architecture. Neuron is the basic processing unit of neural network.  Neural networks are composed of simple 

elements operating in parallel [2].It is inspired by biological nervous systems. The network function is defined by 

connections between elements. A neural network can be trained to perform a particular function by adjusting the 

values of the connection between elements. 

 

Artificial neural network contain layers of simple computing nodes which are connected by weighted connection 

lines and the weights are adjusted during training process based on the comparison of input value and target value. 

This process is continued until the network output matches the target value. 

 

“A neural Network is massively parallel distributed processor made up of simple processing units, which has a 

natural propensity for storing experimental knowledge and making it available for use [3].” Knowledge is acquired 

from its environment by the network through a learning process. The interconnections (weights) used to store the 

knowledge acquired by the network. 

 

The existing neural models have almost no similarities to the biological neural systems. Even the simplest 

biological brain has the following contra-distinctive features as compared to the von-Neumann architecture of the 

digital machine [4]. The computation is massively distributed and parallel. Learning replaces a priori program 

development. Fault-tolerant to a high degree, that is, destruction of a few cells during the computation process 

does affect the end result of computation. 

 

 

I 



  
[Khatter et al., 3(7): July, 2016]                                                                                  ISSN 2349-4506 
  Impact Factor: 2.545 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [44] 

Artificial neural network can be enumerated as [4]-[9] :  

1. Integration and storage of experience. 

2. Consideration of new experience in context of new experience. 

3. Generalization capability. 

4. Fault- tolerant architecture. 

 

Applications of Artificial  Neural Network include Signal processing, Pattern Recognition (character recognition, 

character recognition,  speech recognition) [5], Military (Fault detection in complex engineering systems, 

automatic target recognition, Target tracking), Image processing(image matching, image compression), Decision 

Support Systems ( credit card authorization, stock market analysis), Medicine (image analysis, diagnosis of 

diseases, cancer cell analysis, ECG and EEG ), Artificial Intelligence (expert systems), Function approximation 

(modeling), Electronics ( IC, IC chip layout, analysis of chip failure), Manufacturing, Transportation, 

Entertainment (special effects, Animation), Oil and Gas Exploration, Telecommunications [2]. 

 

FEEDFORWARD NEURAL NETWORK 
In layered neural networks, the neurons are organized in the form of layers. The neuron in a layer get input from 

the previous layer and feed their output to the next layer. This type of networks is called feedforward neural 

networks and output connections from a neuron to the same or previous layer neurons are not permitted. The input 

layer is made of special input neurons, transmitting only the applied external input to their outputs. The last layer 

or neurons is called the output layer, and the layers that are not input or output are called the hidden layers. 

FeedForward Neural Networks are used in different applications related to problems such as data classification, 

time series prediction, and identification and control of non-linear objects [14]. 

 

Single Layer Feedforward Network 

In a network, if there is only the layer of input nodes and a single layer of neurons constituting the output layer, 

then it is called a single layer network. The number of inputs may not be equal to the number of neurons in a layer. 

In most applications a feed-forward network with a single layer of hidden units is used with a sigmoid activation 

function for the units [15]. 

 

Multilayer Feedforward Network  

In a multilayer network there can be more than one layer of neurons.  The data from input units to output units is 

strictly feedforward. The data processing can extend over multiple (layers of) units, but no feedback connections 

are present, that is, connections extending from outputs of units to inputs of units in the same layer or previous 

layers. Also there is no connection within the layer. No processing takes place in the input units. The activation 

of a hidden unit is a function of the weighted inputs plus a bias. The output of the hidden units is distributed over 

the next layer of hidden units, until the last layer of hidden units, of which the outputs are fed into a layer of no 

output units [15]. 

 

Multilayer perceptron is wellknown feedforward layered network, on which the Backpropagation learning 

algorithm [16] is widely implemented. The structures, where connections to the neurons are to the same layer or 

to the previous layers are called recurrent networks. 

 

Although the backpropagation algorithm (BP) has been a significant milestone in neural network research area of 

interest, it has been known as an algorithm with a very poor convergence rate [17]. Many attempts have been 

made to speed up the BP algorithm. Commonly known heuristic approaches [18]-[22] such as momentum [23], 

variable learning rate [24], or stochastic learning [25] lead only to a slight improvement. Better results have been 

obtained with the artificial enlarging of errors for neurons operating in the saturation region [26]-[29]. A 

significant improvement on realization performance can be observed by using various second order approaches 

namely Newton’s method, conjugate gradients, or the Levenberg-Marquardt (LM) optimization technique. 

Among the mentioned methods, the LM algorithm is widely accepted as the most efficient one in the sense of 

realization accuracy [30]. It gives a good compromise between the speed of the Newton algorithm and the stability 

of the steepest descent method, and consequently it constitutes a good transition between these methods. 

 

 



  
[Khatter et al., 3(7): July, 2016]                                                                                  ISSN 2349-4506 
  Impact Factor: 2.545 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [45] 

Problems in FeedForward Neural Network 

A. Choice of architecture/size 

B. Choice of training algorithm 

C. Choice of training parameters (learning rate, momentum etc.) 

 

AUTOMATIC SELECTION OF NN ARCHITECTURE 
Recently, various researchers have investigated different approaches that alter the network architecture as learning 

proceeds. We need a network large enough to learn the mapping and as small as possible to generalize well [31]. 

 

Pruning or Destructive Method 

This method starts with training a network which is larger than required and then removing the unimportant 

connection weights or units that are not required. The initial large size allows the network to learn quickly. 

Approaches include removing the smallest magnitude or insensitive weights or by adding a penalty term to the 

energy function to encourage weight decay. These algorithms are designed to take advantage of larger systems 

while avoiding overfitting problem [32]. Pruning has been carried out on networks in three distinct ways. The first 

is a heuristic approach, identifying which nodes and weights contribute little to the mapping. After these have 

been removed, additional training leads to a better network than the original. An alternative technique is to include 

terms in the error function, so that the weights tend to zero under certain circumstances. Zero weights can be 

removed without degrading the performance of the network. Finally, if we define the sensitivity of the global 

network error to the removal of a weight or node, and evaluate it for each such parameter in the network, we can 

then remove the weights or nodes to which the global error is least sensitive. The sensitivity measurement does 

not interfere with training, and involves only a small amount of extra computational effort [32]. 

 

Regularization 

Regularization is a procedure that is used to solve ill-posed problems by introducing additional information to 

prevent over-fitting. Tikhonov [33] proposed the regularization theory first in the context of functional 

approximation. One of the major issues in FNN training is to control the complexity and provide good 

generalization capabilities. One of the assumptions that are generally made in complexity control is that the desired 

function should be smooth, in the sense that the “nearby” input points lead to “nearby” output points. As pointed 

out by Gemen [34] the problem of complexity control may be related to the bias / variance dilemma in FNNs. 

Regularization is the method which tries to strike a balance between the model bias and model variance by 

incorporating apriori knowledge in the model selection (error function). Regularization is also the method of 

locating an optimum architecture, in terms of number of free parameters and their values. Regularization method 

imposes constraints on the values of the parameters of the network to control complexity. The regularization 

method modifies the error function by adding/subtracting a penalty / regularization termto obtain a modified error 

function.Many regularization terms have been proposed in neural network literature to control the complexity of 

the network model. 

 

Constructive Method  

In constructivemethods the network starts with a small size and grows when needed [35]. The obvious advantage 

of this method is that it might require less computation than the destructive methods. In addition, this method frees 

one from “guessing” a large enough initial network size and topology. However, without proper control of the 

growth, this process could lead to an oversized network [36]. Constructive algorithms overcome the limitation of 

searching for a solution in the weight space of a priori fixed network architecture by extending the search, in a 

controlled fashion, to the entire space of neural-network topologies. Further, it has been shown that at least in 

principle, algorithms that are allowed to add neurons and weights represent a class of universal learners [37]. 

Constructive algorithms search for small solutions first and thus offer a potential for discovering a near minimal 

network that suitably matches the complexity of the learning task. Smaller networks are also preferred because of 

their potential for more efficient hardware implementation and greater transparency in extracting the learned 

knowledge [38]. 
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Constructive Pruning (hybrid) Method   

A constructive algorithm adds hidden nodes to minimal network architecture one by one during training. The 

number of hidden nodes may become ridiculously large in some cases if the addition process is not stopped 

properly. Some algorithms [39] and [40] try to solve the aforementioned problem by employing a pruning phase 

in conjunction with a constructive phase. These algorithms first determine the number of hidden nodes and/or 

weights in neural network roughly using a constructive approach. A pruning approach is then applied for refining 

the selection, i.e., removing the irrelevant hidden nodes and/or weights.  

 

 
 

This shows how a constructive-pruning algorithm adds and prunes hidden nodes in order to find a near optimal 

network architecture for a given problem. However, one needs to determine when to stop the pruning process. 

 

The constructive approach has a number of advantages over the pruning approach. First, for constructive 

algorithms, it is straightforward to specify an initial network whereas for pruning algorithms, one does not know 

in practice how big the initial network should be. Second, constructive algorithms always search for small network 

solutions first. They are thus more computationally economical that pruning algorithms, in which the majority of 

the training time is spent on networks larger than necessary. Third as many networks with different size may be 

capable of implementing acceptable solutions, constructive algorithms are likely to find smaller network solutions 

than pruning algorithms. Smaller networks are more efficient in forward computation and can be described by a 

simpler set of rules. Functions of individual hidden units may also be more easily visualized. Moreover, by 

searching for small networks, the amount of training data required for good generalization may be reduced. Fourth, 

pruning algorithms usually measure the change in error when a hidden unit or weight in the network is removed. 

Due to these advantages constructive algorithms are preferred over pruning algorithms [41].It is common practice 

to combine different models in order to improve the performance and overcome the problems of a single model 

[42]. 

 

CONSTRUCTIVE METHODS  
In general, this class of algorithms starts with a small network and adds units or connections until an adequate 

performance level is obtained. Many constructive neural network algorithms have been surveyed by many authors 

but the most popular out of them is Cascade Correlation algorithm [43]. 

 

Cascade Correlation NN  

Cascade correlation is a powerful method of training neural networks. Cascade Correlation starts with a minimal 

network in which new hidden units are trained and added one by one. Cascade-Correlation consists of two steps. 
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Cascade architecture is the first step in which hidden units are added one at a time to the network. They do not 

change after they are added. Learning algorithm is the second step in which new hidden units are created and 

installed. We try to maximize the magnitude of correlation between the new unit output and residual error signal 

[44]. 

 

In this there are some inputs and one or more output units with no hidden units. Each input unit is connected to 

each output unit with a connection whose weight can be adjusted. Bias input is set to 1 permanently. Hidden units 

are added one by one to the network and each unit receives a connection from original inputs of the network and 

also from pre-existing hidden unit. When the units are added to the network, the weights of hidden units are frozen 

.Output units are repeatedly trained. A new one unit layer is added to the network when new unit is added. This 

is done until some of the incoming weights are zero. In a single layer network we can use Delta rule or Windrow-

hoff with no need to back propogate through hidden units. Quickprop algorithm can be used to train output 

weights. New hidden unit is added to the network and the input weights are frozen and the output weights are 

frozen and all the output weights are trained once. This is repeated until error is small.Whenthe weights in the 

output layer are trained the other weights in the active network are frozen. When the candidate weights are trained 

none of the weights in the active network are changed. In a machine with plenty of memory, it is possible to record 

the unit-values and the output errors for an entire epoch, and then to use these cached values repeatedly during 

training, rather than recomputing them for each training case. This can result in a tremendous speedup, especially 

for large networks. 

 

Dynamic Node Creation Algorithm 

Dynamic Node Creation Algorithm (DNC) addresses the problem of training large networks and testing networks 

with different numbers of hidden layer units. This is a new method called Dynamic Node Creation (DNC) which 

automatically grows backpropogation networks until the target problem is solved [45]. This method starts with a 

network topology having a small number of hidden units and automatically grows backpropagation network by 

adding one hidden unit at a time until a network that can solve the application problem has been found. In this 

model all the connections between the nodes of each layer to the nodes of layer above it are feedforward. There 

are no backward connections. Connections in the network are allowed only between the input units and the hidden 

nodes, and between the hidden units and output units. At all the layers above the input, output (I) = 1

1+𝑒−1  logistic 

activation function [46] is used. New node should be added if both the following conditions are met         
|𝑎𝑡−𝑎𝑡−1|

𝑎𝑡0
<

𝛥𝑇      and    t – w ≥ t0  where at is average squared error at time t, t is current time, t0 is the time when last node 

was added, ΔT is the trigger slope and w is the width of window over which trigger slope is determined. 

A new node can be added after at least w trials. Each time a hidden node is added to the network topology, the 

new network is trained by using the backpropagation method. Now when to stop the addition of node is determined 

by the following conditions. 𝑎𝑡 ≤ 𝑐𝑎 and 𝑚𝑡 ≤ 𝑐𝑚 where at is average squared error at time t, ca is the desired 

cutoff average squarederror, cm is the desired cutoff for maximum squared error, mt is the maximum squared  error 

at the time t on any output at node. If these conditions are satisfied then we can stop adding nodes.  This method 

yields a solution for every problem tested, in particular the method successfully generated networks that solve the 

parity problems with 5 and 6 input units using only 5 and 6 hidden units, respectively. Note that it is extremely 

difficult to train a network with 5 (or 6) hidden units to solve the 5  (or 6) bit parity problem, if we fix the number 

of hidden units in advance. 

 

VARIANTS OF CASCADE CORRELATION NEURAL NETWORK 
Cascade 2 algorithm 

Cascade 2 algorithm was also first proposed by Fahlman, who has implemented the CCA. Cascade 2 algorithm 

differs from CCA by training a new hidden node to directly minimize the residual error rather than tomaximize 

the covariance between hidden node output and residual error at output nodes. Besides, hiddennode has adjustable 

output connections to all of the output nodes and all other things are common in bothalgorithms. Several authors 

have demonstrated that CCA is effective for classification but not very successfulon regression tasks. This is due 

to the correlation term tending to drive the hidden node activations to theirextreme values, thereby, making it hard 

for the network to produce a smoothly varying output [47], [48], [49]. 
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Recurrent CBP 

Recurrent Constructive backpropogation network was proposed by [50]. This method addresses the construction 

of recurrent networks by the use of constructive backpropogation. This is a similar approach to Cascade correlation 

algorithm. A fully recurrent network with arbitrary number of layers can be constructed efficiently. Even though 

there is no need to back propogate the error through not more than one layer of hidden neurons, recurrent 

constructive backpropogation algorithm is as efficient as cascade correlation algorithm. We can continue the 

adaptation of network weights as well as continue structure adaptation after the network is constructed. It includes 

the addition and deletion of neuron and layers in a computationally efficient manner [50]. The recurrent cascade 

correlation algorithm has better modeling capabilities as compared to cascade correlation algorithm. The 

constructive backpropagation procedure for recurrent network construction can be described by the following 

steps: 

 

1. Initialization: Train the first hidden unit by minimizing the cost function (1). At this point there is only one 

recurrent connection, that is, the self-connection. If one hidden unit does not yield acceptable solution, then go to 

step 2. Otherwise stop the training. 

 

2. Train a new hidden unit and adapt the previous ones. Connect network inputs, feedforward connections from 

previous units and recurrent connection from previous units to the new unit and connect its output to the output 

units. Note that in the new neuron perspective the previous units are fixed. In addition, make a recurrent connection 

from the new hidden unit output to all the currently existing hidden units (including the recurrent self-connection). 

Train the new and the previous hidden units hierarchically by minimizing the cost function (l), that is for ith neuron 

the cost function is SSE, 

 

 
 

3. Test for convergence: If the current number of hidden units yields acceptable solution, then stop the training. 

0therwise go back to step 2. 

 

Casper – Cascade network algorithm employing Progressive RPROP 

Casper is a constructive learning which builds cascade networks [51]. It is a modified version of RPROP algorithm 

for network training. RPROP is a gradient descent algorithm which uses separate adaptive learning rates for each 

weight [52], [53]. It is constructed in a manner similar to cascade correlation. It starts with a single hidden neuron 

and successively adds single hiddenneurons. Casper starts with a single hidden neuron and successively adds 

single hidden neurons. RPROP is used to train the whole network each time a hidden neuron is added. RPROP is 

modified, however, such that when a new neuron is added the initial learning rates for the weights in the network 

are reset to different values, depending on the position of the weight in the network. The network is divided into 

three separate regions, each with its own initial learning rate L1, L2 and L3. The first region is made up of all 

weights connecting to the new neuron from previous hidden and input neurons. The second consists of all weights 

connecting the output of the new neuron to the output neurons. The third is made up of the remaining weights, 

which consist of all weights connected to, and coming from, the old hidden and input neurons.  

 

Casper is known to produce more compact networks with very promising results. 

 

Adaptive slope sigmoidal function Constructive Algorithm  

Sudhir et al. [54] developed the adaptive slope sigmoidal function for constructive algorithm. Depending on the 

problem to be solved the number of nodes in the input and output layers are defined. It starts with minimal 

architecture and one hidden node is added during training at one time to the network. This method able to solve 

the step size of weight update problem. The nonlinear hidden nodes are prevented from going into saturation.  

 

CONCLUSION 
This paper presents an overview of constructive neural networks. In constructive method, training starts with 

minimal structure and then more layers of neurons are added according to some rule which is predefined. 
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Constructive algorithms provide a natural framework for incorporating problem-specific knowledge into initial 

network configurations. In this paper we have enlightened various constructive algorithm methods that construct 

feedforward architecture for regression problems.  
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